Производная

Егэ задачи на производную

Производная

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

ФункцияПроизводная
$c$$0$
$x$$1$
$x^n$$nx^$
$/$$-/$
$√x$$/$
$e^x$$e^x$
$lnx$$/$
$sinx$$cosx$
$cosx$$-sinx$
$tgx$$/$
$ctgx$$-/$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

Найти производную функции $f(x)=3x^5-cosx+/$

Производная суммы (разности) равна сумме (разности) производных.

2. Производная произведения

Найти производную $f(x)=4x·cosx$

3. Производная частного

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ — координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x'(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

Следовательно, можем составить общее равенство:

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f'(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f'(x_0) = tg α = 0$. Точка $x_0$, в которой $f ‘(x_0) = 0$, называется Экстремумом.

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Касательная к графику возрастает, следовательно, $f'(x_0) = tg α > 0$

Для того, чтобы найти $f'(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$f'(x_0) = tg ВАС = 0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f'(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

Отрицательным значениям производной соответствуют интервалы, на которых функция $f (x)$ убывает. Поэтому, выделим на рисунке интервалы, на которых функция убывает.

В выделенных интервалах находятся точки $х_2, х_4$. В ответ напишем их количество $2$.

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

Производная

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

ФункцияПроизводная
$c$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

Найти производную функции $f(x)=3x^5-cosx+/$

Производная суммы (разности) равна сумме (разности) производных.

2. Производная произведения

Найти производную $f(x)=4x·cosx$

3. Производная частного

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$

$x$$1$
$x^n$$nx^$
$/$$-/$
$√x$$/$
$e^x$$e^x$
$lnx$$/$
$sinx$$cosx$
$cosx$$-sinx$
$tgx$$/$
$ctgx$$-/$

$f'(x_0) = tg ВАС = 0,25$

Основные правила дифференцирования

Точка движется по координатной прямой согласно закону x t 1,5t 2-3t 7 , где x t координата в момент времени t.

Examer. ru

26.04.2018 0:37:07

2018-04-26 00:37:07

Любые данныеЛюбые данные Любые данные Любые данные

Любые данные

Любые данные

Источники:

Https://examer. ru/ege_po_matematike/teoriya/issledovanie_funkcii

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *